Multi-Agent Plan Recognition: Formalization and Algorithms

نویسندگان

  • Bikramjit Banerjee
  • Landon Kraemer
  • Jeremy Lyle
چکیده

Multi-Agent Plan Recognition (MAPR) seeks to identify the dynamic team structures and team behaviors from the observations of the activity-sequences of a set of intelligent agents, based on a library of known team-activities (plan library). It has important applications in analyzing data from automated monitoring, surveillance, and intelligence analysis in general. In this paper, we formalize MAPR using a basic model that explicates the cost of abduction in single agent plan recognition by ”flattening” or decompressing the (usually compact, hierarchical) plan library. We show that single-agent plan recognition with a decompressed library can be solved in time polynomial in the input size, while it is known that with a compressed (by partial ordering constraints) library it is NP-complete. This leads to an important insight: that although the compactness of the plan library plays an important role in the hardness of single-agent plan recognition (as recognized in the existing literature), that is not the case with multiple agents. We show, for the first time, that MAPR is NP-complete even when the (multi-agent) plan library is fully decompressed. As with previous solution approaches, we break the problem into two stages: hypothesis generation and hypothesis search. We show that Knuth’s “Algorithm X” (with the efficient “dancing links” representation) is particularly suited for our model, and can be adapted to perform a branch and bound search for the second stage, in this model. We show empirically that this new approach leads to significant pruning of the hypothesis space in MAPR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithms and Hardness Results for Multi-Agent Plan Recognition

Bikramjit Banerjee School of Computing The University of Southern Mississippi Hattiesburg, MS 39406 Jeremy Lyle Dept. of Mathematics The University of Southern Mississippi Hattiesburg, MS 39406 Landon Kraemer School of Computing The University of Southern Mississippi Hattiesburg, MS 39406 Abstract We extend our recent formalization of multi-agent plan recognition (MAPR), to accommodate compact ...

متن کامل

Efficient context free parsing of multi-agent activities for team and plan recognition

We extend a recent formalization of multi-agent plan recognition (MAPR), to accommodate compact multi-agent plan libraries in the form of context free grammars (CFG), incomplete plan executions, and uncertainty in the observation trace. Some existing approaches for single agent plan recognition cast it as a problem of parsing a single agent activity trace. With the help of our multi-agent CFG, ...

متن کامل

Branch and Price for Multi-Agent Plan Recognition

The problem of identifying the (dynamic) team structures and team behaviors from the observed activities of multiple agents is called Multi-Agent Plan Recognition (MAPR). We extend a recent formalization of this problem to accommodate a compact, partially ordered, multi-agent plan language, as well as complex plan execution models – particularly plan abandonment and activity interleaving. We ad...

متن کامل

Efficient Plan Recognition for Dynamic Multi-agent Teams

This paper addresses the problem of plan recognition for multi-agent teams. Complex multi-agent tasks typically require dynamic teams where the team membership changes over time. Teams split into subteams to work in parallel, merge with other teams to tackle more demanding tasks, and disband when plans are completed. We introduce a new multi-agent plan representation that explicitly encodes dyn...

متن کامل

Fast and Complete Symbolic Plan Recognition

Recent applications of plan recognition face several open challenges: (i) matching observations to the plan library is costly, especially with complex multi-featured observations; (ii) computing recognition hypotheses is expensive. We present techniques for addressing these challenges. First, we show a novel application of machine-learning decision-tree to efficiently map multi-featured observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010